Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int\limits_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x$

Solution:

By substituting $x=\tan \theta$
$I=\int\limits_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta$
$=\frac{\pi}{8} \log 2$