Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the adjacent circuit, the instantaneous current equation is
Question

NTA AbhyasNTA Abhyas 2022

Solution:

Let $\phi$ is the phase difference between $V$ and $i$
$\text{tan} \phi=\frac{X_{L}}{R}=\frac{\omega L}{R}=\frac{100 \times 1}{100}=1$
$\Rightarrow \phi=\frac{\pi }{4}$
Since this is an $LR$ circuit, $V$ will lead $i$
$\therefore $ The instantaneous current equation will be
$i_{}=i_{0 }\text{sin} \left(100 \, t - \phi\right)$ where $\phi=\frac{\pi }{4}$ and $i_{0}=\frac{V_{0}}{Z}$
$i_{0}=\frac{V_{0}}{\sqrt{R^{2} + \left(\omega L\right)^{2}}}=\frac{200}{\sqrt{\left(100\right)^{2} + \left(100 \times 1\right)^{2}}}=\sqrt{2}$
$\therefore i=\sqrt{2}\text{sin} \left(100 \, t - \frac{\pi }{4}\right)$