Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In any triangle $A B C$, if $a: b: c=2: 3: 4$, then $R: r=$

TS EAMCET 2019

Solution:

We have,
$a: b: c=2: 3: 4$
Let $\quad a=2 k, b=3 k, c=4 k$
$\therefore R=\frac{a b c}{4 \Delta}$ and $r=\frac{\Delta}{s}$
$\therefore \frac{R}{r}=\frac{s \cdot a b c}{4 \Delta^{2}}$
$\Rightarrow \frac{R}{r}=\frac{s \cdot(2 k)(3 k)(4 k)}{4 s(s-2 k)(s-3 k)(s-4 k)}$
$\Rightarrow \frac{R}{r}=\frac{6 k^{3}}{\left(\frac{9 k}{2}-2 k\right)\left(\frac{9 k}{2}-3 k\right)\left(\frac{9 k}{2}-4 k\right)}$
$\left[\because s=\frac{a+b+c}{2}\right]$
$\Rightarrow \frac{R}{r}=\frac{6 \cdot 2^{3} \cdot k^{3}}{5 k \cdot 3 k \cdot k} $
$\Rightarrow \frac{R}{r}=\frac{16}{5}$
$\therefore R: r=16: 5$