Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a $\Delta ABC$ , if $\frac{2 r_2 r_3}{r_2 - r_1} = r_3 - r_1 $ then $ \frac{r_1 (r_2 + r_3)}{\sqrt{r_1r_2 + r_2 r_3 + r_3 r_1}} = $

AP EAMCETAP EAMCET 2019

Solution:

Given,
$\frac{2 r_{2} r_{3}}{r_{2}-r_{1}}=r_{3}-r_{1} $
$\Rightarrow 2 r_{2} r_{3}=\left(r_{2}-r_{1}\right)\left(r_{3}-r_{1}\right) $
$\Rightarrow 2 \cdot \frac{\Delta}{(s-b)} \cdot \frac{\Delta}{(s-c)}=\left(\frac{\Delta}{s-b}-\frac{\Delta}{s-a}\right)\left(\frac{\Delta}{s-c}-\frac{\Delta}{s-a}\right) $
$\Rightarrow \left.\frac{2 \Delta^{2}}{(s-b)(s-c)}=\Delta^{2}\left\{\frac{s-a-s+b}{(s-b)(s-a)}\right\} \frac{s-a-s+c}{(s-c)(s-a)}\right\} $
$\Rightarrow \frac{2}{(s-b)(s-c)}=\frac{(b-a)}{(s-b)(s-a)} \times \frac{(c-a)}{(s-c)(s-a)} $
$\Rightarrow 2(s-a)^{2}=(b-a)(c-a) $
$\Rightarrow \frac{2(b+c-a)^{2}}{4}=(b-a)(c-a) $
$\Rightarrow b^{2}+c^{2}+a^{2}+2 b c-2 c a-2 a b=2 $
$\Rightarrow b^{2}+c^{2}+a^{2}+2 b c-2 c a-2 a b $
$=2 b c-2 b a-2 a c+2 a^{2} $
$\Rightarrow b^{2}+c^{2}+a^{2}=2 a^{2}$
$ \Rightarrow a^{2}=b^{2}+c^{2}$
Now, $ \frac{r_{1}\left(r_{2}+r_{3}\right)}{\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}} $
$=\frac{\frac{\Delta}{s-a} \times \Delta \cdot\left\{\frac{1}{s-b}+\frac{1}{s-c}\right\}}{s} $
$\left[\because r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=s^{2}\right] $
$= \frac{\Delta^{2}(2 s-b-c)}{s(s-a)(s-a)(s-c)} $
$= \frac{\Delta^{2}(a+b+c-b-c)}{\Delta^{2}}=a=2 R $