Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $z=\frac{7-i}{3-4i}$ then $z^{14}=$

VITEEEVITEEE 2017

Solution:

$z=\frac{7- i}{3-4 i} \times\frac{3+4i}{3+4i}$
$=\frac{21+25 i+4}{16+9}=\frac{25\left(1+i\right)}{25}=\left(1+i\right)$
$z^{14}=\left(1+i\right)^{14}=\left[\left(1+i\right)^{2}\right]^{7}$
$=\left(2i\right)^{7}=2^{7} i^{7}=-2^{7} i$