Q. If $x^3+\frac{1}{x^3}=62$, then find the value of $\sqrt{x^3}+\frac{1}{\sqrt{x^3}}$. The following steps are involved in solving the above problem. Arrange them in sequential order. (A) $\therefore\left(\sqrt{x^3}+\frac{1}{\sqrt{x^3}}\right)^2=62+2=64$ (B) $\Rightarrow\left(\sqrt{x^3}+\frac{1}{\sqrt{x^3}}\right)=\sqrt{64}=8$ (C) $\therefore\left(\sqrt{x^3}+\frac{1}{\sqrt{x^3}}\right)^2=x^3+\frac{1}{x^3}+2$ (D) But $x^3+\frac{1}{x^3}=62$
Polynomials, LCM and HCF of Polynomials
Solution: