Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $[x]^2 - 5[x] + 6 = 0$, where $[\cdot]$ denote the greatest integer function, then

Relations and Functions

Solution:

Given, $[x]^2 - 5[x] + 6 = 0$
$\Rightarrow \left[x\right]^{2} - 3\left[x\right] - 2\left[x\right] + 6 = 0$
$\Rightarrow \left(\left[x\right] - 3\right)\left(\left[x\right] - 2\right) = 0$
$\Rightarrow \left[x\right] = 3$ or $\left[x\right] = 2$
$\Rightarrow x \in [3,4)$ or $x \in [2,3)$
$\therefore x \in [2,4)$