Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k}),$ then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$ is

AIEEEAIEEE 2011Vector Algebra

Solution:

We have
$(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \bar{b}) \times(\vec{a}+2 \bar{b})]$
$=(2 \vec{a}-\vec{b}) \cdot(\vec{b}-2 \vec{a})$
$=-(2 \vec{a}-\vec{b})^{2}$
$=-\left[4|\vec{a}|^{2}+|\vec{b}|^{2}-4 \vec{a} \cdot \vec{b}\right]$
$=-[4+1]=-5$