Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If two roots of the equation $(a-1)\left(x^2+x+1\right)^2-(a+1)\left(x^4+x^2+1\right)=0$ are real and distinct, then 'a' lies in the interval

Complex Numbers and Quadratic Equations

Solution:

$(a-1)\left(x^2+x+1\right)^2-(a+1)\left(x^4+x^2+1\right)=0 $..........(1)
$\because x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right) $
$\therefore (1) \text { becomes }$
$\Rightarrow \left(x^2+x+1\right)\left[\left(x^2+x+1\right)(a-1)-(a+1)\left(x^2-x+1\right)\right]=0 $
$\Rightarrow \left(x^2+x+1\right)\left(x^2-a x+1\right)=0$
Here two roots are imaginary and for other two roots to be real $ D>0$
$\Rightarrow a^2-4>0 \Rightarrow a \in(-\infty,-2) \cup(2, \infty)$