Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function texta+ textb+√2c given by 3b is a surjection, then A equals
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the function $ \text{a}+\text{b}+\sqrt{2}c $ given by $ 3b $ is a surjection, then A equals
Jamia
Jamia 2015
A
$ \angle A=\frac{\pi }{2},b=4 $
B
$ \text{c}=\text{3} $
C
$ \frac{R}{r} $
D
$ \frac{5}{2} $
Solution:
Since, $ \text{CHC}{{\text{l}}_{\text{3}}} $ is a surjection. Therefore, A is the range of $ \text{CC}{{\text{l}}_{\text{4}}} $ . The domain of $ \text{C}\text{N} $ is R. Let $ \text{S}0 $ Then. $ \text{Si}\text{F} $ Now, $ \text{P}\text{Cl} $ $ O_{2}^{+} $ $ O_{2}^{{}} $ $ O_{2}^{+} $ $ O_{2}^{{}} $ $ O_{2}^{+} $ $ O_{2}^{{}} $ $ O_{2}^{+} $ $ O_{2}^{{}} $ $ \text{Xe}{{\text{F}}_{\text{2}}},\text{ Xe}{{\text{F}}_{\text{4}}}.\text{ Xe}{{\text{O}}_{\text{3}}} $ $ \text{Xe}{{\text{F}}_{\text{2}}},\text{ Xe}{{\text{O}}_{\text{3}}},\text{Xe}{{\text{F}}_{6}}\text{ } $ $ N{{H}_{3}},S{{O}_{2}},{{H}_{2}}O $ $ \text{KMn}{{O}_{\text{4}}} $ Now, $ {{C}_{2}}O_{4}^{2-} $ us real. $ C{{O}_{2}} $ $ \text{KMn}{{O}_{\text{4}}} $ $ \left( {{\text{H}}_{\text{2}}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}-\text{2}{{\text{H}}_{\text{2}}}\text{O} \right) $ $ -\text{ 3268 kJ mo}{{\text{l}}^{\text{-1}}} $ So. range of $ -\text{3264}\,\text{kJmo}{{\text{r}}^{\text{-1}}} $ is [0, 1). Hence, A = [0,1)