Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $p >1$ and $q >1$ be such that $\log (p+q)=\log p+\log q$, then the value of $\log (p-1)+\log (q-1)$ is equal to

Continuity and Differentiability

Solution:

Given, $p + q = pq$ ......(1)
Now, $\log (p-1)+\log (q-1)=\log (p q-p-q+1)=0 [U \operatorname{sing}(1)]$