Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\omega$ is an imaginary cube root of unity, then the value of
$\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}$ is

Complex Numbers and Quadratic Equations

Solution:

Using $\omega^{10}=\omega, \omega^{23}=\omega^2$, we get
$\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}=\sin \left(-\pi-\frac{\pi}{4}\right)=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$