Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $g\left(x\right) = \int\limits^{x}_{0}$ cos 4t dt, then $g\left(x + \pi\right)$ equals

AIEEEAIEEE 2012Integrals

Solution:

$ g\left(x\right) = \int\limits^{x+\pi}_{0}$ cos 4t dt, $= g\left(x\right) +\int\limits^{\pi}_{0}$ cos 4t dt
$= g\left(x\right) + g\left(\pi\right)$
Here $g\left(\pi\right) = \int\limits^{\pi}_{0}$cos 4t dt $= 0$
so answers are $\left(2\right)$ or $\left(3\right)$