Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x)=\begin{vmatrix}x-3 & 2 x^2-18 & 3 x^3-81 \\ x-5 & 2 x^2-50 & 4 x^3-500 \\ 1 & 2 & 3\end{vmatrix}$ then $f(1) f(3)+f(3) f(5)+f(5) f(1)$ is equal to

Determinants

Solution:

Clearly $f(3)=\begin{vmatrix}0 & 0 & 0 \\ -2 & -32 & -392 \\ 1 & 2 & 3\end{vmatrix}=0$ and $f(5)=\begin{vmatrix}2 & 32 & 294 \\ 0 & 0 & 0 \\ 1 & 2 & 3\end{vmatrix}=0$, where $f(1) \neq 0$
$\therefore f (1) f (3)+ f (3) f (5)+ f (5) f (1)=0= f (3)+ f (5)$