Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ cot \,(sin^{-1} \,x) = cos (tan^{-1} \sqrt 3) $ , then $ x = $

J & K CETJ & K CET 2017

Solution:

We have, $cot(sin^{-1} x)$
$=cos\left(tan^{-1} \sqrt{3}\right)$
$\Rightarrow cot \left(sin^{-1}\, x\right)=cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
$\Rightarrow sin^{-1} x=cot^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow x=sin\left[cot^{-1}\left(\frac{1}{2}\right)\right]$
$=sin \left[sin^{-1}\left(\frac{2}{\sqrt{5}}\right)\right]$
$\therefore x=\frac{2}{\sqrt{5}}$
$\left[\because cot^{-1}\left(\frac{1}{2}\right)=\theta \Rightarrow cot\,\theta=\frac{1}{2} \therefore sin \theta=\frac{2}{\sqrt{5}}\right]$