Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \text{bc}-\text{1} $ touches the circle $ \text{bc}+\text{1} $ , then the point $ B\left( 5,\frac{1}{2} \right) $ lies on the circle

JamiaJamia 2015

Solution:

If the line $ (0.01M)+Zn(s) $ touches the circles $ {{E}_{(cell)}} $ Then, Length of the perpendicular from(0,0) =Radius $ E_{_{(cell)}}^{o}=1.61V $ $ \Delta {{H}_{(mixing)}}>0 $ $ 900K,{{S}_{8}} $ $ {{S}_{2}} $ $ 0.\text{75 at}{{\text{m}}^{\text{3}}} $ $ \text{2}.\text{55 at}{{\text{m}}^{\text{3}}} $ So, $ \text{25}.0\text{ at}{{\text{m}}^{\text{3}}} $ satisfy the equation $ \text{1}.\text{33 at}{{\text{m}}^{\text{3}}} $ . Hence, $ \text{C}{{\text{H}}_{\text{3}}}\text{Cl} $ lies on the circle $ \text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}} $ .