Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}log\,x&-1\\ -log\,x&2\end{bmatrix}$ and if $det (A) = 2$, then the value of $x$ is equal to

KEAMKEAM 2012Determinants

Solution:

Given, $A=\begin{bmatrix}\log x & -1 \\ -\log x & 2\end{bmatrix}$
$\therefore |A|=\begin{bmatrix}\log x & -1 \\ -\log x & 2\end{bmatrix}$
$=2 \log x-\log x=\log x$
But it is given, $\operatorname{det}(A)=|A|=2$
$\therefore 2=\log x \Rightarrow x=e^{2}$