Given, $A=\begin{bmatrix}\log x & -1 \\ -\log x & 2\end{bmatrix}$
$\therefore |A|=\begin{bmatrix}\log x & -1 \\ -\log x & 2\end{bmatrix}$
$=2 \log x-\log x=\log x$
But it is given, $\operatorname{det}(A)=|A|=2$
$\therefore 2=\log x \Rightarrow x=e^{2}$