Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ A=\left[ \begin{matrix} 1 & 2 \\ 3 & 5 \\ \end{matrix} \right], $ then the value of the determinant $ |{{A}^{2009}}-5{{A}^{2008}}| $ is

KEAMKEAM 2009Determinants

Solution:

Given, $ A=\left[ \begin{matrix} 1 & 2 \\ 3 & 5 \\ \end{matrix} \right] $
$ \Rightarrow $ $ |A|=5-6=-1 $
$ \therefore $ $ |{{A}^{2009}}-5{{A}^{2008}}|=|{{A}^{2008}}||A-5I| $
$={{(-1)}^{2008}}\left| \left[ \begin{matrix} 1 & 2 \\ 3 & 5 \\ \end{matrix} \right]-\left[ \begin{matrix} 5 & 0 \\ 0 & 5 \\ \end{matrix} \right] \right| $
$=\left| \begin{matrix} -4 & 2 \\ 3 & 0 \\ \end{matrix} \right| = -6 $