Thank you for reporting, we will resolve it shortly
Q.
If $(3 x \%$ of $y)+(x \%$ of $2 y)=14 \%$ of $(x+y)$, then find the value of $\frac{1}{x}+\frac{1}{y}$.
Statistics
Solution:
Given, $(3 x \%$ of $y)+(x \%$ of $2 y)=15 \%$ of $(x+y)$
$\frac{3 x y}{100}+\frac{2 x y}{100}=\frac{15}{100}(x+y) $
$\frac{5 x y}{100}=\frac{15}{100}(x+y) $
$\Rightarrow \frac{x+y}{x y}=\frac{5}{15} \times \frac{100}{100} $
$\Rightarrow \frac{1}{y}+\frac{1}{x}=\frac{2}{3}$