Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2a+3b+6c=0, then at least one root of the equation ax2+bx+c=0 lies in the interval
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ 2a+3b+6c=0, $ then at least one root of the equation $ a{{x}^{2}}+bx+c=0 $ lies in the interval
Jamia
Jamia 2007
A
(0, 1)
B
(1, 2)
C
(2, 3)
D
(1, 3)
Solution:
Let $ f(x)=a{{x}^{2}}+bx+c $ $ \Rightarrow $ $ f(x)=\frac{a{{x}^{3}}}{3}+\frac{b{{x}^{2}}}{2}+cx+d $ $ \Rightarrow $ $ f(x)=\frac{2a{{x}^{3}}+3b{{x}^{2}}+6cx+6d}{6} $ $ \Rightarrow $ $ f(1)=\frac{2a+3b+6c+6d}{6}=\frac{6d}{6}=d $ $ (\because 2a+3b+6c=0) $ $ f(0)=\frac{6d}{6}=d $ $ \therefore $ $ f(0)=f(1) $ $ \Rightarrow $ $ f(x) $ will vanish at least once between 0 and 1. $ \therefore $ One of the roots of $ a{{x}^{2}}+bx+c=0 $ lies between 0 and 1.