Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $2\overrightarrow{a}+3\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}$ then $\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c} +\overrightarrow{c}\times\overrightarrow{a}= $

Vector Algebra

Solution:

$2\,\vec{a}+3\,\vec{b}+\vec{c}=0\quad\ldots\left(1\right)$
$\therefore 2\,\vec{a} \times \vec{a}+3\,\vec{b}\times\vec{a}+\vec{c}\times\vec{a}=\vec{0}\times\vec{a}$
$\Rightarrow -3\,\vec{a} \times \vec{b}+\vec{c} \times \vec{a}=\vec{0}$
$\Rightarrow \vec{c} \times \vec{a}=3\,\vec{a} \times \vec{b}\quad\ldots\left(2\right)$
Again $2\,\vec{a} \times \vec{b}+3\,\vec{b}\times\vec{b}+\vec{c}\times\vec{b}=\vec{0}\times\vec{b}=\vec{0}$
$\Rightarrow 2\,\vec{a}\times\vec{b}=\vec{b}\times\vec{c}=\vec{0}$
$\Rightarrow 2\,\vec{a}\times\vec{b}=\vec{b}\times\vec{c}\quad\ldots\left(3\right)$
$\therefore \vec{b}\times\vec{c}+\vec{c}\times\vec{a}+\vec{a}\times\vec{b}$
$=\vec{b}\times\vec{c}+3\,\vec{a}\times\vec{b}+\vec{a}\times\vec{b}\quad$ [By $(2)$]
$=\vec{b}\times\vec{c}+4\,\vec{a}\times\vec{b}\quad$ [By $(2)$]
$=\vec{b}\times\vec{c}+2\,\vec{b}\times\vec{c}$
$=3\left(\vec{b}\times\vec{c}\right)$.