Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given below are the diameters of circles (in mm) drawn in a design.
Diameter 33 - 36 37 - 40 41 - 44 45 -48 49 - 52
Number of circles 15 17 21 22 25

find the mean diameter of the circles.

Statistics

Solution:

Converting the given series into an exclusive series we prepare the table given below.
Class Frequency$f_i$ Mid point$( x_i)$ $y_{i} = \frac{\left(x_{i}-42.5\right)}{4}$ $y_i^2$ $f_iy_i$ $f_i y_i^2$
32.5 - 36.5 15 34.5 -2 4 -30 60
36.5 - 40.5 17 38.5 -1 1 -17 17
40.5 - 44.5 21 42.5=A 0 0 0 0
44.5 - 48.5 22 46.5 1 1 22 22
48.5 - 52.5 25 50.5 2 4 50 100
N=100 25 199

$\therefore A = 42.5, h=4$,
$N= \sum f_{i} = 100, \sum f_{i} y_{i} = 25$
and $\sum f_{i} y_{i}^{2} = 199$.
$ \therefore \bar{x} = \left( A+ \frac{\sum f_{i}y_{i}}{N} \times h\right)$
$\Rightarrow \bar{x} = \left(42.5 +\frac{25}{100}\times4\right) = 43.5 $
Thus the mean $= 43.5$