Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Geometric mean of tan 1°, tan 2°, ldots ldots . ldots, tan 89° is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Geometric mean of $\tan 1^{\circ}, \tan 2^{\circ}, \ldots \ldots . \ldots, \tan 89^{\circ}$ is
AP EAMCET
AP EAMCET 2020
A
$\frac{1}{89}$
B
$1$
C
$\frac{1}{3}$
D
$\sqrt{3}$
Solution:
$\tan 1^{\circ} \cdot \tan 2^{\circ} \ldots \tan 45^{\circ} \cdot \tan 46^{\circ} \ldots \tan 88^{\circ} \cdot \tan 89^{\circ}$
$\tan 1^{\circ} \cdot \tan 2^{\circ} \ldots \tan 44^{\circ} \cdot \tan 45^{\circ} \tan \left(90-44^{\circ}\right) \ldots \tan \left(90^{\circ}-1^{\circ}\right)$
$\tan 1^{\circ} \cdot \tan 2^{\circ} \ldots \tan 44^{\circ} \tan 45^{\circ} \operatorname{Cot} 44^{\circ} \cdot \operatorname{Cot} 43^{\circ} \ldots \operatorname{Cot} 1^{\circ}$
$\tan 1^{\circ} \cdot \tan 2^{\circ} \ldots \tan 44^{\circ} 1 \frac{1}{\tan 44^{\circ}} \frac{1}{\tan 43^{\circ}} \cdots s \frac{1}{\tan 1^{\circ}}=1$