Thank you for reporting, we will resolve it shortly
Q.
For $0< x< \frac{\pi}{2}, \int\limits_{1 / 2}^{\sqrt{3} / 2} \ln \left(e^{\cos x}\right) \cdot d(\sin x)$ is equal to :
Integrals
Solution:
$I=\int\limits_{\pi / 6}^{\pi / 3} \cos x \cos x d x=\int\limits_{\pi / 6}^{\pi / 3} \cos ^2 x d x=\int\limits_{\pi / 6}^{\pi / 3} \sin ^2 x d x \Rightarrow 2 I=\int\limits_{\pi / 6}^{\pi / 3} d x=\frac{\pi}{6} \Rightarrow I=\frac{\pi}{12}$