Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Evaluate: $\displaystyle \lim _{x \rightarrow a} \frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{x-a}$.

Limits and Derivatives

Solution:

$\displaystyle \lim _{x \rightarrow a} \frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{x-a}$
$=\displaystyle \lim _{x \rightarrow a} \frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{(x+2)-(a+2)}$
$=\displaystyle \lim _{y \rightarrow b} \frac{y^{5 / 3}-b^{5 / 3}}{y-b}$
where $x+2=y, a+2=b$. and when $x \rightarrow a, y \rightarrow b$
$=\frac{5}{3} b^{5 / 3-1}=\frac{5}{3} b^{2 / 3}=\frac{5}{3}(a+2)^{2 / 3}$