Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)}$ is equal to :

JEE MainJEE Main 2022Limits and Derivatives

Solution:

$\displaystyle\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)}$ $\displaystyle\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\sin ^{-1} \sqrt{1-x^{2}}\right)-x}{1-\tan \left(\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)\right)}$
$\displaystyle\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sqrt{1-x^{2}}-x}{1-\left(\frac{\sqrt{1-x^{2}}}{x}\right)}$ $\displaystyle\lim _{x \rightarrow \frac{1}{\sqrt{2}}}(-x)=-\frac{1}{\sqrt{2}}$