Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. According to Charles' law (1) $ {{\left( \frac{dV}{dT} \right)}_{p}}=K $ (2) $ {{\left( \frac{dT}{dV} \right)}_{p}}=K $ (3) $ {{\left( \frac{1}{T}-\frac{V}{{{T}^{2}}} \right)}_{p}}=0 $ (4) $ V\propto \frac{1}{T} $

BHUBHU 2011

Solution:

According to Charles law $ V\propto t $ at constant p $ V=kT $ at constant p Or $ {{\left( \frac{dV}{dT} \right)}_{p}}=K $
Further, $ T\propto V $ $ T=KV $
Or $ {{\left( \frac{dT}{dV} \right)}_{p}}=K $
Further, $ \frac{V}{T}=K $
$ \frac{1}{T}.V=K $
Differentiating w.r.t. $ V $
$ {{\left( \frac{1}{T}-\frac{V}{{{T}^{2}}} \right)}_{p}}=0 $