Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ABC$ is a triangle and $P$ is any point on $BC$ such that $\overrightarrow{ PQ }$ is the resultant of the vectors $\overrightarrow{ AP }, \overrightarrow{ PB }$ and $\overrightarrow{ PC }$, then

Vector Algebra

Solution:

image
We have
$\Rightarrow \overrightarrow{ PQ }=\overrightarrow{ AP }+\overrightarrow{ PB } +\overrightarrow{ PC }$
$\Rightarrow \overrightarrow{ PQ }=\overrightarrow{ AB }+\overrightarrow{ PC }$
$\Rightarrow \overrightarrow{ AB }=\overrightarrow{ PQ }-\overrightarrow{ PC }=\overrightarrow{ PQ }+\overrightarrow{ CP }$
$=\overrightarrow{ CP }+\overrightarrow{ PQ }=\overrightarrow{ CQ }$
$\therefore AB = CQ$ and $AB || CQ$
$\therefore ABQC$ is a parallelogram,
$\therefore $ is a fixed point