Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A taut string having tension $50\, N$ and linear mass density $0.25\, kg\, m^{- 1}$ is used inside a cart to generate a wave pulse starting at the left end. The velocity of cart so that the pulse remains stationary with respect to the ground is $-\alpha \hat{i}ms^{- 1}$ . Write the value of $100\alpha .$
$\left(\right.$ Take, $\sqrt{2}=1.414)$

NTA AbhyasNTA Abhyas 2022

Solution:

$v=\sqrt{\frac{T}{\mu }}$
$=\sqrt{\frac{50}{0 . 25}}=\sqrt{200}=10\sqrt{2}=14.14\, m/s$
$\therefore \overset{ \rightarrow }{V}_{P}=\overset{ \rightarrow }{V}_{P C}+\overset{ \rightarrow }{V}_{C G}$
$0=14.14\hat{i}+\overset{ \rightarrow }{v}_{C G}$
$\overset{ \rightarrow }{v}_{CG}=-14.14\hat{i}\, m/s$