Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. A solid cube of copper of edge $10 \,cm$ subjected to a hydraulic pressure of $7 \times 10^{6}$ pascal. If Bulk modulus of copper is $140\, GPa$, then contraction in its volume will be

Mechanical Properties of Solids

Solution:

Initial volume $V=(\text { side })^{3}=\left(10 \times 10^{-2}\right)^{3}$
$P=7 \times 10^{6} Pa$
$B=140 \times 10^{9} Pa$
We know
$\frac{-\Delta V}{V}=\frac{P}{B} $
$\{-\Delta V=\text { Contraction in volume }\}$
$\frac{-\Delta V}{10^{-3}}=\frac{7 \times 10^{6}}{140 \times 10^{9}} $
$-\Delta V=5 \times 10^{-8} m ^{3}$