Thank you for reporting, we will resolve it shortly
Q.
A particle starting from rest with uniform acceleration travels a distance $x$ in first $2$ second and a distance $y$ in next $2$ second, then
Motion in a Straight Line
Solution:
Here $u=0$ For $t=2 s , s=x$
Using $s=u t+\frac{1}{2} a t^{2}$
$x=\frac{1}{2} a \times 2^{2}=2 a$
Next $2 s$, the particle travels $y$
$\Rightarrow t=(2+2) s =4 s , s=x+y$
$\Rightarrow (x+y)=\frac{1}{2} a(4)^{2}=8 a$
$\Rightarrow (x+y)-x=8 a-2 a=6 a$
or$y=6 a=3(2 a) \Rightarrow y=3 x$