Q. $A=\begin{bmatrix}l_{1}&m_{1}&n_{1}\\ l_{2}&m_{2}&n_{2}\\ l_{3}&m_{3}&n_{3}\end{bmatrix} and B= \begin{bmatrix}p_{1}&q_{1}&r_{1}\\ p_{2}&q_{2}&r_{2}\\ p_{3}&q_{3}&r_{3}\end{bmatrix}$ where $p_{i}, q_{i}, r_{i}$ are the co-factors of the elements $l_{i}, m_{i}, n_{i}$ for $i=1,2,3 .$ If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$ are the direction cosines of three mutually perpendicular lines then $\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right)$ and $\left(p_{3}, q_{3}, r_{3}\right)$ are
Three Dimensional Geometry
Solution: