Q.
z1,z2 are two non-real complex numbers such that z2z1+z1z2=1. Then z1,z2 and the origin
1946
223
Complex Numbers and Quadratic Equations
Report Error
Solution:
If z2z1=z, the given equation becomes z2−z+1=0
i.e., z=−ω and −ω2
or, z2z1=−ω ⇒z1=−z2ω OB=∣z2−0∣=∣z2∣ OA=∣z1−0∣=∣−z2ω∣=∣z2∣∣−ω∣=∣z2∣
and AB∣z2−z1∣=∣z2+z2ω∣ =∣z2∣∣1+ω∣=∣∣z2∣∣∣∣−ω2∣∣=∣z2∣
Thus z1,z2 and origin form an equilateral triangle.