Given x:y:z=tan(15π+α):tan(15π+β):tan(15π+γ) ∴x=ktan(15π+α),y=ktan(15π+β), z=ktan(15π+γ)
Now, z−xz+xsin2(γ−α) =tan(12∘+γ)−tan(12∘+α)tan(12∘+γ)+tan(12∘+α)⋅sin2(γ−α) =sin(γ−α)sin{24∘+(γ+α)}⋅sin2(γ−α) =[sin24∘cos(γ+α)+cos24∘sin(γ+α)]×sin(γ−α) =sin24∘[cos(γ+α)sin(γ−α)] +cos24∘[sin(γ+α)sin(γ−α)] =2sin24∘(sin2γ−sin2α)−2cos24∘(cos2γ−cos2α)…(i)
Similarly, x−yx+ysin2(α−β)=2sin24∘(sin2α−sin2β) −2cos24∘(cos2α−cos2β)…(ii)
and y−zy+zsin2(β−γ)=2sin24∘(sin2β−sin2γ) −2cos24∘(cos2β−cos2γ)… (iii)
By adding Eqs. (i), (ii) and (iii), we get z−xz+xsin2(γ−α)+x−yx+ysin2(α−β) +y−zy+zsin2(β−γ)=0