Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
x= cos θ, y= sin 5 θ ⇒ (1-x2) (d2 y/d x2)-x (d y/d x) is equal to
Q.
x
=
cos
θ
,
y
=
sin
5
θ
⇒
(
1
−
x
2
)
d
x
2
d
2
y
−
x
d
x
d
y
is equal to
1640
220
EAMCET
EAMCET 2007
Report Error
A
-5 y
B
5 y
C
25 y
D
-25 y
Solution:
Given,
x
=
cos
θ
,
y
=
sin
5
θ
d
θ
d
x
=
−
sin
θ
,
d
θ
d
y
=
5
cos
5
θ
∴
d
x
d
y
=
d
x
/
d
θ
d
y
/
d
θ
=
−
s
i
n
θ
5
c
o
s
5
θ
⇒
d
x
2
d
2
y
=
d
x
d
(
d
x
d
y
)
=
d
θ
d
(
d
x
d
y
)
⋅
d
x
d
θ
=
d
θ
d
(
s
i
n
θ
−
5
c
o
s
5
θ
)
⋅
−
s
i
n
θ
1
=
(
s
i
n
2
θ
s
i
n
θ
s
i
n
5
θ
⋅
25
+
5
c
o
s
5
θ
c
o
s
θ
)
⋅
−
s
i
n
θ
1
=
−
s
i
n
2
θ
25
s
i
n
5
θ
−
s
i
n
3
θ
5
c
o
s
5
θ
c
o
s
θ
Now,
(
1
−
x
2
)
d
x
2
d
2
y
−
x
d
x
d
y
=
(
1
−
cos
2
θ
)
(
s
i
n
2
θ
−
25
s
i
n
5
θ
−
s
i
n
3
θ
5
c
o
s
5
θ
c
o
s
θ
)
−
cos
θ
(
s
i
n
θ
−
5
c
o
s
5
θ
)
=
sin
2
θ
(
s
i
n
2
θ
−
25
s
i
n
5
θ
−
s
i
n
3
θ
5
c
o
s
θ
c
o
s
5
θ
)
+
s
i
n
θ
5
c
o
s
θ
c
o
s
5
θ
=
−
25
sin
5
θ
−
s
i
n
θ
5
c
o
s
θ
c
o
s
5
θ
+
s
i
n
θ
5
c
o
s
θ
c
o
s
5
θ
=
−
25
sin
5
θ
=
−
25
y