39
142
Relations and Functions - Part 2
Report Error
Solution:
(A)tan−1(x2)=cot−1(x21) is obvious true for all x∈R−{0}
(B)cos−1(1+x21−x2)∈[0,π) for all x∈R⇒2cos−1(1+x21−x2)=2π
(C) Domain of f(x) is {±1} range of f(x) is {0} ∴f(x)=0∀x∈ domain of f(x)
(D) tan2x+cot2x≥2 for all x∈R−(2nπ)n∈I⇒
(D) is incorrect ( f is not defined for any x. Domain is ϕ )