We know that cosx=1−2!x2+4!x4−…
So, cosx>1−2x2 for all x∈(0,1) ⇒xcosx>x−2x3 ⇒0∫1xcosxdx>0∫1(x−2x3)dx ⇒0∫1xcosxdx>83( Option A is correct )∵x2cosx<x for all x∈(0,1) ⇒0∫1x2cosxdx<0∫1xdx ⇒0∫1x2cosxdx<21( Option C is incorrect )
Again we know that, sinx=x−3!x3+5!x5−…
So, sinx>x−6x3 for all x∈(0,1) ⇒xsinx>x2−6x4 0∫1xsinxdx>0∫1(x2−6x4)dx ⇒0∫1xsindx>103 (Option B is correct) ∵x2sinx>x3−6x5 ⇒0∫1x2sinxdx>92 (Option D is correct)