Q.
Which of the following function(s) is(are) surjective?
[Note: [m] and {m} denotes greatest integer function less than or equal to m and fraction part function of m respectively, and Dl denotes the domain of the function y=l(x). ]
38
145
Relations and Functions - Part 2
Report Error
Solution:
(A)f(x)=ln(tanπ[x]+∣∣x2+2x−3∣∣) ∵[x]∈I⇒tanπ[x]=0, and ∣∣x2+2x−3∣∣=∣∣(x+1)2−2∣∣∈[0,∞) So, f(x)∈R⇒f(x) is surjective
(B)g(x)=x−1x2+2x−3,x=1 g(x)=(x−1)(x−1)(x+3),x=1 g(x)=x+3∴g(x)=4(∵x=1)
So, range of g(x) is R−{4} ⇒g(x) is not surjective
(C)h(x)=ln(1+x1−x),1+x1−x>0 ⇒Dh=(−1,1) ∵1+x1−x take all value between (0,∞) ∵1+x1−x take all value between (0,∞)
So, Range of h(x)=R ⇒h(x) is surjective
(D) k(x)[x]+[−x]+1+{x}+{−x}+1
Domin of k(x) is R x∈/I⇒[x]+[−x]=−1 and {x}+{−x}=1 ⇒k(x)=2 x∈I⇒[x]+[−x]=0 and {x}+{−x}=0 ⇒k(x)=2
So, Range of k(x)={2,2}
So, k(x) is not surjective