Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
When y= sin -1( (2t/1+t2) ) , x= tan -1( (2t/1-t2) ) where -1<t<1 , then (dy/dx) is equal to
Q. When
y
=
sin
−
1
(
1
+
t
2
2
t
)
,
x
=
tan
−
1
(
1
−
t
2
2
t
)
where
−
1
<
t
<
1
, then
d
x
d
y
is equal to
1160
247
Jharkhand CECE
Jharkhand CECE 2007
Report Error
A
0
B
1
C
−
1
D
∞
Solution:
Given,
y
=
sin
−
1
(
1
+
t
2
2
t
)
,
x
=
tan
−
1
(
1
−
t
2
2
t
)
Let
t
=
tan
(
ϕ
/2
)
∴
1
+
t
2
2
t
=
1
+
t
a
n
2
(
ϕ
/2
)
2
t
a
n
(
ϕ
/2
)
=
2
(
ϕ
/2
)
=
sin
ϕ
⇒
1
+
t
2
2
t
=
sin
ϕ
?
(i) Also,
1
−
t
2
2
t
=
1
−
t
a
n
2
(
ϕ
/2
)
2
t
a
n
(
ϕ
/2
)
=
tan
2
(
ϕ
/2
)
=
tan
ϕ
..(ii)
From (i) and (ii),
y
=
sin
−
1
sin
ϕ
and
x
=
tan
−
1
tan
(
ϕ
)
⇒
y
=
ϕ
,
x
=
ϕ
⇒
d
ϕ
d
y
=
1
,
d
ϕ
d
x
=
1
∴
d
x
d
y
=
1
Alternate Method: Given,
y
=
sin
−
1
(
1
+
t
2
2
t
)
,
x
=
tan
−
1
(
1
−
t
2
2
t
)
⇒
d
t
d
y
=
1
−
(
1
+
t
2
2
t
)
2
1
×
d
t
d
(
1
+
t
2
2
t
)
=
1
−
t
2
1
+
t
2
[
(
1
+
t
2
)
2
(
1
+
t
)
2
×
2
−
2
t
(
2
t
)
]
=
1
+
t
2
2
.. (i) and
d
t
d
x
=
1
+
(
1
−
t
2
2
t
)
2
1
d
t
d
(
1
−
t
2
2
t
)
=
1
+
(
1
−
t
2
2
t
)
1
(
1
−
t
2
)
2
(
1
−
t
2
)
×
2
+
2
t
(
2
t
)
=
(
1
+
t
2
)
2
(
1
−
t
2
)
2
[
(
1
−
t
2
)
2
(
1
+
t
2
)
]
=
1
+
t
2
2
.. (ii)
∴
d
x
d
y
=
d
t
d
y
×
d
x
d
t
=
1
+
t
2
2
×
2
1
+
t
2
=
1
[from (i) and (ii)]