Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
When |x | < (1/2) , the coefficient of x4 in the expansion of (3x2 - 5x+3/(x-1)(2x+1)(x+3)) is
Q. When
∣
x
∣
<
2
1
,
the coefficient of
x
4
in the expansion of
(
x
−
1
)
(
2
x
+
1
)
(
x
+
3
)
3
x
2
−
5
x
+
3
is
2083
186
AP EAMCET
AP EAMCET 2019
Report Error
A
27
722
100%
B
27
724
0%
C
27
−
722
0%
D
27
−
724
0%
Solution:
Given expression
(
x
−
1
)
(
2
x
+
1
)
(
x
+
3
)
3
x
2
−
5
x
+
3
=
−
(
x
2
−
3
5
x
+
1
)
(
1
−
x
)
−
1
(
1
+
2
x
)
−
1
(
1
+
3
x
)
−
1
=
−
(
x
2
−
3
5
x
+
1
)
(
1
+
x
+
x
2
+
x
3
+
x
4
)
(
1
−
2
x
+
4
x
2
−
8
x
3
+
16
x
4
)
(
1
−
3
x
+
9
x
2
−
27
x
3
+
81
x
4
)
[On neglecting higher degree terms]
=
−
[
1
+
x
+
x
2
+
x
3
+
x
4
−
(
3
5
x
+
3
5
x
2
+
3
5
x
3
+
3
5
x
4
)
+
x
2
+
x
3
+
x
4
]
[
1
−
3
x
+
9
x
2
−
27
x
3
+
81
x
4
−
2
x
+
3
2
x
2
−
9
2
x
3
+
27
2
x
4
+
4
x
2
−
3
4
x
3
+
9
4
x
4
−
8
x
3
+
3
8
x
4
+
16
x
4
]
=
−
[
1
−
3
2
x
+
3
x
2
+
3
x
3
+
3
x
4
]
[
1
−
3
7
x
+
9
43
x
2
−
27
259
x
3
+
81
1555
x
4
]
So, coefficient of
x
4
in the expansion of
(
x
+
1
)
(
2
x
+
1
)
(
x
+
3
)
3
x
2
−
5
x
+
3
=
[
−
81
1555
+
81
518
+
27
43
−
9
7
+
3
1
]
=
−
81
1555
+
518
+
129
−
63
+
27
=
−
81
2166
=
−
27
722