Q.
When θ varies over the real numbers, the maximum value of cosθ−cos2θ is
1602
186
J & K CETJ & K CET 2009Trigonometric Functions
Report Error
Solution:
Let y=cosθ−cos2θ⇒y′=−sinθ+2sin2θ ⇒y′′=−cosθ+4cos2θ
For maxima or minima, put y′=0 ⇒2sin2θ=sinθ ⇒4sinθcosθ=sinθ ⇒cosθ=41 and sinθ=0 ⇒θ=cos−1(41),θ=0o
At θ=cos−1(41),y′′<0, maximum ∴ Maximum value, ymax=(cosθ−2cos2θ+1)θ=cos−1(1/4) =41−2(161)+1 =45−81 =89