Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
When ( sin 9 θ/ cos 27 θ)+( sin 3 θ/ cos 9 θ)+( sin θ/ cos 3 θ)=k ( tan 27 θ- tan θ) is defined, then k=
Q. When
c
o
s
27
θ
s
i
n
9
θ
+
c
o
s
9
θ
s
i
n
3
θ
+
c
o
s
3
θ
s
i
n
θ
=
k
(
tan
27
θ
−
tan
θ
)
is defined, then
k
=
1968
218
TS EAMCET 2018
Report Error
A
2
π
B
−
2
1
C
1
D
4
π
Solution:
Given,
c
o
s
27
θ
s
i
n
9
θ
+
c
o
s
9
θ
s
i
n
3
θ
+
c
o
s
3
θ
s
i
n
θ
=
k
(
tan
27
θ
−
tan
θ
)
∵
L
H
S
=
c
o
s
27
θ
c
o
s
9
θ
s
i
n
9
θ
c
o
s
9
θ
+
s
i
n
3
θ
c
o
s
27
θ
+
c
o
s
3
θ
s
i
n
θ
=
2
c
o
s
9
θ
c
o
s
27
θ
s
i
n
18
θ
+
s
i
n
30
θ
−
s
i
n
24
θ
+
c
o
s
3
θ
s
i
n
θ
[
sin
21
θ
+
sin
5
θ
+
sin
33
θ
+
sin
27
θ
−
sin
27
θ
=
4
c
o
s
3
θ
c
o
s
9
θ
c
o
s
27
θ
−
s
i
n
21
θ
+
4
s
i
n
θ
c
o
s
9
θ
c
o
s
27
θ
]
=
4
c
o
s
3
θ
c
o
s
9
θ
c
o
s
27
θ
s
i
n
15
θ
+
s
i
n
33
θ
+
4
s
i
n
θ
c
o
s
9
θ
c
o
s
27
θ
=
4
c
o
s
3
θ
c
o
s
9
θ
c
o
s
27
θ
2
s
i
n
24
θ
c
o
s
9
θ
+
4
s
i
n
θ
c
o
s
9
θ
c
o
s
27
θ
4
=
2
c
o
s
3
θ
c
o
s
27
θ
s
i
n
24
θ
+
2
s
i
n
θ
c
o
s
27
θ
=
2
c
o
s
3
θ
c
o
s
27
θ
s
i
n
(
27
θ
−
3
θ
)
+
c
o
s
3
θ
s
i
n
θ
=
2
1
[
c
o
s
27
θ
s
i
n
27
θ
−
c
o
s
3
θ
s
i
n
3
θ
]
+
c
o
s
3
θ
s
i
n
θ
=
2
1
c
o
s
27
θ
s
i
n
27
θ
−
2
1
(
c
o
s
3
θ
s
i
n
3
θ
−
2
s
i
n
θ
)
=
2
1
tan
27
θ
−
2
1
c
o
s
θ
(
4
c
o
s
2
θ
−
3
)
3
s
i
n
θ
−
4
s
i
n
3
θ
−
2
s
i
n
θ
=
2
1
[
tan
27
θ
−
c
o
s
θ
(
1
−
4
s
i
n
2
θ
)
s
i
n
θ
(
1
−
4
s
i
n
2
θ
)
]
=
2
1
[
tan
27
θ
−
tan
θ
]
So,
k
=
2
1