Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
What is the value of ∫ limits01 cos (π x) cos([2x]π)dx ? (Here [t] denotes the integral part of the real number t )
Q. What is the value of
0
∫
1
cos
(
π
x
)
cos
(
[
2
x
]
π
)
d
x
?
(Here
[
t
]
denotes the integral part of the real number
t
)
1637
202
KVPY
KVPY 2009
Report Error
A
1
B
−
1
C
π
2
D
π
−
2
Solution:
Let
I
=
0
∫
1
cos
(
π
x
)
cos
[
2
x
]
π
d
x
⇒
I
=
0
∫
1/2
cos
(
π
x
)
cos
0
d
x
+
1/2
∫
1
cos
π
x
cos
π
d
x
⇒
I
=
0
∫
1/2
cos
π
x
d
x
−
1/2
∫
1
cos
π
x
d
x
⇒
I
=
[
π
s
i
n
π
x
]
0
1/2
−
[
π
s
i
n
π
x
]
1/2
1
⇒
I
=
π
1
[
sin
2
π
−
sin
0
]
−
π
1
[
sin
π
−
sin
2
π
]
⇒
I
=
π
1
[
1
−
0
]
−
π
1
[
0
−
1
]
=
π
2