Let f(x) = x2 + kx + 1
f '(x) = 2x + k
f(x) is strictly increasing on (1, 2)
if f '(x) > 0 for x ∈(1, 2) ⇒ 2x + k > 0 for x ∈(1, 2) ⇒ k > -2x for x ∈ (1, 2)
Now, 1 < x < 2 ⇒ 2 < 2x < 4 ⇒ -2 > -2x > -4 ⇒ - 4 < -2x < -2 ⇒k≥−2
Hence least value of k = -2.