Since, A+B is collinear to C and B+C is
collinear to A. ∴A+B=λC and B+C=μA
where λ and μ are scalars. ⇒A+B+C=(λ+1)C
and A+B+C=(μ+1)A ⇒(λ+1)C=(μ+1)A
If λ=−1, then (λ+1)C=(μ+1)A C=λ+1μ+1A ⇒C and A are collinear.
This is a contradiction to the given condition ∴λ=−1 ∴A+B+C=0