Let y=f(x)=tanx,x=45∘=(4π)c
and x+Δx=46∘.
Then, Δx=1∘=0.01745 radians
For x=4π, we have y=f(4π)=tan4π=1
Let dx=Δx=0.01745
Now, y=tanx ⇒dxdy=sec2x ⇒(dxdy)x=π/4=sec24π=2 ∴dy=dxdydx ⇒dy=2(0.01745)=0.03490 ⇒Δy=0.03490 (∵Δy≅dy)
Hence, tan46∘=y+Δy =1+0.03490 =1.03490≈1.03.