[(1+2x)−x2]4=4C0(1+2x)4−4C1(1+2x)3(x2) +4C2(1+2x)2(x2)2−4C3(1+2x)(x2)3+4C4(x2)4 =(1+2x)4−4(1+2x)3x2+24×3(1+2x)2x24 −4(1+2x)×x38+x416 =(1+2x)4−x8(1+2x)3+x224(1+2x)2−x332(1+2x)+x416
Now, open the expansion of (1+2x)4,(1+2x)3 and (1+2x)2, we get (1+2x−x2)4=(1+4⋅2x+6⋅4x2+4⋅8x3+16x4) −8⋅x1(1+3⋅2x+3⋅4x2+8x3) +24⋅x21(1+x+4x2)−32×x31(1+2x)+x416 =(1+2x+23x2+2x3+16x4)−(x8+12+6x+x2) +(x224+x24+6)−(x332+x216)+x416 =16x4+2x3+x2(23−1)+x(2−6)+(1−12+6) +(24−8)x1+(24−16)x21−x332+x416 =16x4+2x3+2x2−4x−5+x16+x28−x332+x416