Since, we have to find the approximate value of the cube root of 127. So, we consider the function y=f(x)=x1/3
Let x=125 and x+Δx=127.
Then, Δx=127−125=2
For x=125, we have y−(125)1/3=5.
[Putting x=125 in y=x1/3]
Let dx=Δx=2
Now, y=x1/3 ⇒dxdy=3x2/31 ⇒(dxdy)x=125=3(125)2/31 =3(53)2/31=751 ∴dy=dxdydx ⇒dy=751(2)=752 ⇒Δy=752 [∵Δy≅dy]
Hence, (127)1/3=y+Δy=5+752 =5.026.