A→×B→ lies perpendicular to the plane having A→ and B→ .
Thus, A→×B→=⎣⎡i^−32j^−24k^−36⎦⎤ ⇒A→×B→=0i^+12j^−8k^ ⇒A→×B→=12j^−8k^ .
The unit vector of A→×B→ is ⇒∣∣A→×B→∣∣A→×B→=20812j^−8k^ ⇒∣∣A→×B→∣∣A→×B→=41312j^−8k^ ⇒∣∣A→×B→∣∣A→×B→=133j^−2k^
Therefore, the unit vector perpendicular to vector A→=−3i^−2j^−3k^ and B→=2i^+4j^+6k^ both is 133j^−2k^ .