Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
undersett arrow 0 textLim ∫ limits02 π (| sin (x+t)- sin x|/|t|) d x equals
Q.
t
→
0
Lim
0
∫
2
π
∣
t
∣
∣
s
i
n
(
x
+
t
)
−
s
i
n
x
∣
d
x
equals
42
129
Integrals
Report Error
A
0
B
1
C
2
D
4
Solution:
I
=
t
→
0
Lim
0
∫
2
π
∣
∣
t
s
i
n
(
x
+
t
)
−
s
i
n
x
∣
∣
d
x
=
0
∫
2
π
(
t
→
0
Lim
∣
∣
t
2
c
o
s
(
x
+
2
t
)
s
i
n
2
t
∣
∣
)
d
x
=
0
∫
2
π
t
→
0
Lim
∣
∣
cos
(
x
+
2
t
)
2
t
s
i
n
2
t
∣
∣
=
0
∫
2
π
∣
cos
x
∣
d
x
=
4